# МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ВОЛНОВОЙ ЗУБЧАТОЙ ПЕРЕДАЧИ С ДИСКОВЫМ ГЕНЕРАТОРОМ ВОЛН

# С.Е. Люминарский, И.Е. Люминарский

Рассмотрено применение пространственной математической модели волновой зубчатой передачи для определения силового взаимодействия элементов волновой передачи с дисковым генератором волн. Расчет основан на использовании метода Бубнова – Галеркина. Исследовано изменение формы гибкого и жесткого колес при увеличении нагрузки волновой зубчатой передачи. Численными исследованиями подтверждена адекватность предложенной математической модели.

Ключевые слова: волновая передача, гибкое колесо, жесткое колесо, генератор волн.

## Введение

В большинстве математических моделей волновых зубчатых передач (ВЗП) [1–3] все силы, действующие на элементы этих передач, приводятся к одной расчетной плоскости. Применение плоских математических моделей не позволяет определить пространственную деформацию гибкого колеса и распределение сил по длине зубчатого венца. Использование пространственной модели позволит более точно определять напряжения в гибком колесе и, следовательно, уточнять расчет на долговечность.

Кроме того, в работах [1–3] поверхностный контакт между элементами ВЗП заменен односторонним контактом в отдельных точках. Такая замена может привести к необоснованному увеличению напряжений в точках, расположенных вблизи односторонних связей.

В работе [4] предложена пространственная модель определения силового взаимодействия элементов ВЗП с кулачковым генератором волн, в которой поверхностные контакты элементов заменяются поверхностными силами с кусочно-линейными распределениями. Расчет основан на использовании метода Бубнова – Галеркина.

# Постановка задачи

Рассмотрим применение предложенного в работе [4] метода для расчета волновой зубчатой передачи с дисковым генератором волн. Для проверки адекватности предложенной модели проведены расчетные исследования передачи, изображенной на рис. 1. Результаты экспериментального исследования этой передачи приведены в работе [5].

# Математическая модель

В расчетной модели (см. рис. 1) учитываются деформации гибкого колеса 1, жесткого колеса 2, дисков генератора волн 3; контактные деформации в подшипниках 4, изгибные деформации вала 5, на котором установлены диски. Диски и наружные кольца подшипников представляются едиными телами, которые самоустанавливаются под действием сил со стороны гибкого колеса и со стороны тел качения подшипников. Далее диск с наружным кольцом подшипника будем называть диском. При определении перемещений точек дисков учитывается не только их деформация, но и их смещение как твердых тел. Векторы смещений дисков содержат по два элемента (поступательные смещения вдоль осей x, y)  $\mathbf{a}_i = (a_{ix}, a_{iy})^{\mathrm{T}}$  (*i*=2, 3).

Жесткое колесо и подшипники дисков установлены на валах, деформация которых





45

приводит к смещению этого колеса и внутренних колец подшипников. Вектор смещения жесткого колеса содержит три элемента  $\mathbf{a}_1 = (a_{1x}, a_{1y}, a_{1\phi_2})^{\mathrm{T}}$ , а вектор смещения внутренних колец подшипников – два элемента  $\mathbf{a}_4 = (a_{4x}, a_{4y})^{\mathrm{T}}$ .

Внутренние поверхности гибкого колеса S<sub>2</sub> и S<sub>3</sub> взаимодействуют с наружными поверхностями первого  $S'_2$  и второго  $S'_3$  дисков (см. рис. 1). Эти поверхности разбиваются на прямоугольные подобласти линиями, параллельными оси колеса, и окружностями, расположенными в поперечных сечениях гибкого колеса и диска. Каждому узлу сетки ставится в соответствие безразмерная функция Куранта ф<sub>іі</sub> [6], которая представляет собой шестиугольную пирамиду с единичной высотой. В качестве базисных функций используются функции  $u_{ij} = \frac{3}{S_{ij}} \phi_{ij}$ , где  $S_{ij}$  – площадь основания пирамиды. Базисные функции и представляют собой шестиугольные пирамиды с единичным объемом (рис. 2, a) и имеют размерность м<sup>-2</sup>. При одномерной нумерации базисные функции  $u_{ii}$  обозначены  $u_{k}$ .

Распределенные по поверхности силы взаимодействия гибкого колеса с первым и вторым дисками представляются следующим образом:

$$p^{(2)} = \sum_{k=1}^{N_2} P_k^{(2)} u_k, \ p^{(3)} = \sum_{k=1}^{N_3} P_k^{(3)} u_k$$

где  $N_2$ ,  $N_3$  – количество узловых точек на наружных поверхностях  $S'_2$  и  $S'_3$ ;  $P_k^{(2)}$ ,  $P_k^{(3)}$  – ко-эффициенты.

Распределение поверхностной силы  $P_k^{(2)} u_k$ имеет форму шестиугольной пирамиды. Коэффициенты  $P_k^{(2)}$ ,  $P_k^{(3)}$  имеют размерность силы и равны значению соответствующей равнодействующей рассматриваемой распределенной силы. Векторы  $\mathbf{P}^{(2)} = \begin{pmatrix} P_1^{(2)} & \dots & P_{N_2}^{(2)} \end{pmatrix}^{\mathsf{T}}$  и  $\mathbf{P}^{(3)} = \begin{pmatrix} P_1^{(3)} & \dots & P_{N_3}^{(3)} \end{pmatrix}^{\mathsf{T}}$  далее будем называть векторами сил поверхностного взаимодействия гибкого колеса с дисками.

Гибкое колесо может взаимодействовать с жестким колесом по рабочим и нерабочим боковым поверхностям зубьев. Боковые поверхности жесткого колеса обозначим S<sub>1</sub>, гибкого колеса –  $S'_1$ . В развертке на плоскость поверхности  $S_1$  и  $S'_1$  представляют собой прямоугольники, одна сторона которых (высота зуба) в несколько десятков раз меньше другой (ширины зуба). Для таких поверхностей использование непосредственно базисных функций  $u_{ii}$  является затруднительным. Во-первых, при их использовании количество узловых точек будет очень большим (несколько десятков тысяч), во-вторых, коэффициенты податливости гибкого колеса слабо изменяются по высоте зуба, поэтому матрица податливости ВЗП будет плохо обусловленной.

Поверхности  $S_1$  и  $S'_1$  разбиваются взаимно перпендикулярными линиями, образуя сетки. Линии первой группы параллельны оси колеса, линии второй группы расположены в поперечных сечениях зубьев. Каждому поперечному сечению ставится в соответствие функция  $u_j^*$ (рис. 2,  $\delta$ ), которая равна линейной комбинации базисных функций  $u_{ij}$  [4]:

$$u_{j}^{*} = \sum_{i=1}^{N_{q_{2}}} \chi_{ij} u_{ij} ,$$

где  $\chi_{ij}$  – безразмерные коэффициенты, характеризующие распределение сил взаимодействия боковых поверхностей зубьев по их высоте;  $N_{q_2}$  – количество узлов сетки, расположенных в одном поперечном сечении.

Суммирование выполняется по всем узлам, расположенным в одном поперечном сечении зуба. Функция  $u_i^*$  имеет размерность м<sup>-2</sup>, по-



Рис. 2. Общий вид базисной функции  $u_{ii}(a)$  и функции  $u_{ij}^{*}(b)$ 

**46** 

верхностный интеграл от этой функции равен единице. Коэффициенты  $\chi_{ij}$  определяются итерационным способом [4], в пределах одной итерации коэффициенты  $\chi_{ij}$  не изменяются.

Распределенная по боковым поверхностям зубьев сила  $p^{(1)}$  с использованием линейной комбинации функций  $u_j^*$  представляется в виде

$$p^{(1)} = \sum_{j=1}^{N_1} P_j^{(1)} u_j^*,$$

где  $N_1$  – количество узловых точек на боковых поверхностях зубьев.

Узловые точки функции  $u_j^*$  расположены на продольной оси зуба ( $q_1$  – на рис. 2,  $\delta$ ). Каждая узловая точка соответствует поперечному сечению зуба.

Коэффициент  $P_j^{(1)}$  равен модулю равнодействующей распределенной силы  $P_j^{(1)}u_j^*$ , приложенной к *j*-му поперечному сечению. Вектор  $\mathbf{P}^{(1)} = \left(P_1^{(1)} \dots P_{N_1}^{(1)}\right)^{\mathrm{T}}$  далее будем называть вектором сил взаимодействия зубьев по боковым поверхностям.

Для составления разрешающей системы уравнений используем метод Бубнова – Галеркина. Уравнение взаимного непроникания поверхностей  $S_1$ ,  $S'_1$  скалярно умножается на функции  $u_j^*$ , а уравнения взаимного непроникания поверхностей  $S_2$  и  $S'_2$ ,  $S_3$  и  $S'_3$  – на функции  $u_{ij}$  [4]. После добавления к этим уравнениям уравнений равновесия незакрепленных элементов и неравенств, учитывающих односторонний характер взаимодействия, получим следующую систему уравнений:

где  $\tilde{\delta}^{(1)}$ ,  $\tilde{\delta}^{(2)}$ ,  $\tilde{\delta}^{(3)}$  – векторы приведенных зазоров между поверхностями  $S_1$  и  $S_1'$ ;  $S_2$  и  $S_2'$ ;  $S_3$  и  $S_3'$ соответственно [4];  $\tilde{\delta}^{(4)}$ ,  $\tilde{\delta}^{(5)}$  – векторы зазоров между телами качения и поверхностями S<sub>4</sub> и S<sub>5</sub>;  $\tilde{\boldsymbol{\delta}}_{0}^{(1)}, \, \tilde{\boldsymbol{\delta}}_{0}^{(2)}, \, \tilde{\boldsymbol{\delta}}_{0}^{(3)}$  – векторы приведенных начальных зазоров между поверхностями S<sub>1</sub> и S<sub>1</sub>'; S<sub>2</sub> и S<sub>2</sub>';  $S_{3}$  и  $S'_{3}$  соответственно, т.е. зазоров между недеформированными элементами передачи;  $ilde{m{\delta}}_0^{(4)},\, ilde{m{\delta}}_0^{(5)}$  — векторы начальных зазоров между телами качения и поверхностями  $S_4$  и  $S_5$ ;  $ilde{\mathbf{D}}^{_{(11)}}, ilde{\mathbf{D}}^{_{(12)}}, \dots, ilde{\mathbf{D}}^{_{(35)}}$  – приведенные матрицы податливости [4];  $\mathbf{D}^{(42)}$ ,  $\mathbf{D}^{(44)}$ ,  $\mathbf{D}^{(53)}$ ,  $\mathbf{D}^{(55)}$  – матрицы податливости;  $\mathbf{\tilde{G}}^{(11)}$ ,  $\mathbf{\tilde{G}}^{(22)}$ ,  $\mathbf{\tilde{G}}^{(33)}$ ,  $\mathbf{G}^{(42)}$ ,  $\mathbf{G}^{(44)}$ ,  $\mathbf{G}^{(53)}$ ,  ${f G}^{\mbox{\tiny (54)}}$  – матрицы, связывающие векторы зазоров  $\tilde{\delta}^{(1)}, \, \tilde{\delta}^{(2)}, \, \tilde{\delta}^{(3)}, \, \tilde{\delta}^{(4)}, \, \tilde{\delta}^{(5)}$  с векторами смещений  $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ ;  $\mathbf{C}^{(b)}, \mathbf{C}^{(k)}$  – матрицы жесткости валов жесткого колеса и подшипников;  $\tilde{\delta}_{j,-}$  элементы векторов  $\tilde{\delta}^{(1)}, \tilde{\delta}^{(2)}, \tilde{\delta}^{(3)}, \tilde{\delta}^{(4)}, \tilde{\delta}^{(5)};$ взаимодействия по внутренним поверхностям первого и второго дисков с телами качения подшипников.

Последние четыре строки системы линейных уравнений в системе уравнений (1) выражают уравнения равновесия жесткого колеса, двух дисков и вала, на котором они установлены. Например, шестая сверху строка системы уравнений соответствует трем уравнениям равновесия жесткого колеса:

$$\sum P_{ix}^{(1)} = 0, \ \sum P_{iy}^{(1)} = 0, \ \sum M_z(P_i^{(1)}) = M_B,$$

где  $M_B$  – момент сопротивления, приложенный к жесткому колесу.

$$\begin{pmatrix} \tilde{\mathbf{D}}^{(11)} & \tilde{\mathbf{D}}^{(12)} & \tilde{\mathbf{D}}^{(13)} & 0 & 0 & \tilde{\mathbf{G}}^{(11)} & 0 & 0 & 0 \\ \tilde{\mathbf{D}}^{(21)} & \tilde{\mathbf{D}}^{(22)} & \tilde{\mathbf{D}}^{(23)} & \tilde{\mathbf{D}}^{(24)} & 0 & 0 & \tilde{\mathbf{G}}^{(22)} & 0 & 0 \\ \tilde{\mathbf{D}}^{(31)} & \tilde{\mathbf{D}}^{(32)} & \tilde{\mathbf{D}}^{(33)} & 0 & \tilde{\mathbf{D}}^{(35)} & 0 & 0 & \tilde{\mathbf{G}}^{(33)} & 0 \\ 0 & \mathbf{D}^{(42)} & 0 & \mathbf{D}^{(44)} & 0 & 0 & \mathbf{G}^{(42)} & 0 & \mathbf{G}^{(44)} \\ 0 & 0 & \mathbf{D}^{(53)} & 0 & \mathbf{D}^{(55)} & 0 & 0 & \mathbf{G}^{(53)} & \mathbf{G}^{(54)} \\ \tilde{\mathbf{G}}^{(11)} & 0 & 0 & 0 & 0 & \mathbf{C}^{(b)} & 0 & 0 & 0 \\ 0 & \tilde{\mathbf{G}}^{(22)} & 0 & \mathbf{G}^{(24)} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \tilde{\mathbf{G}}^{(33)} & 0 & \mathbf{G}^{(35)} & 0 & 0 & 0 & \mathbf{C}^{(b)} \\ 0 & 0 & 0 & \mathbf{G}^{(44)} & \mathbf{G}^{(45)} & 0 & 0 & 0 & \mathbf{C}^{(b)} \\ \end{pmatrix}, \qquad (1)$$

Матрица  $\mathbf{C}^{(b)}$  и вектор  $\mathbf{B}^{b}$ , расположенные в указанной строке, имеют следующий вид:

$$\mathbf{C}^{(b)} = \begin{pmatrix} C^b & 0\\ 0 & C^b\\ 0 & 0 \end{pmatrix}, \quad \mathbf{B}^b = \begin{pmatrix} 0\\ 0\\ M_B \end{pmatrix},$$

где C<sup>b</sup> – жесткость опоры жесткого колеса в направлениях осей x и y.

Последние два неравенства и уравнение системы (1) выражают односторонний характер взаимодействия поверхностей.

Рассмотрим определение векторов приведенных начальных зазоров между гибким колесом и дисками  $\tilde{\delta}_{0}^{(2)}, \tilde{\delta}_{0}^{(3)}$ , входящих в систему уравнений (1). Зазоры между недеформированными телами далее будем называть начальными зазорами.

Представим функцию начальных зазоров в виде линейной комбинации базисных функций:

$$\boldsymbol{\delta}_{0}^{(2)} \approx \sum \boldsymbol{\delta}_{0k}^{(2)} \frac{S_{k}}{3} u_{k},$$

где  $S_k$  — площадь поверхности, на которой функция  $u_k$  отлична от нуля;  $\delta_{0k}^{(2)}$  — начальные зазоры в узлах сетки между поверхностями  $S_2$  и  $S'_2$ .

Коэффициент  $\frac{S_k}{3}$  введен для того, чтобы коэффициенты  $\delta_{0k}^{(2)}$  были равны зазорам в узловых точках. На основании метода Бубнова – Галеркина функцию начальных зазоров скалярно умножим на базисные функции  $u_i$ , в результате чего получим формулу для определения приведенных зазоров:

$$\tilde{\delta}_{0i}^{(2)} = \sum_{k} \delta_{0k}^{(2)} \frac{S_{k}}{3} (u_{k}, u_{i}), \qquad (2)$$

где  $(u_k, u_i) = \iint_S u_k \cdot u_i dS$  — скалярное произведение базисных функций.

Скалярное произведение  $(u_k, u_i)$  отлично от нуля только для соседних узлов, поэтому в формуле (2) суммирование выполняется только для узлов, которые являются соседними с узлом, имеющим номер *i*. В процессе решения системы уравнений (1) коэффициенты  $(u_k, u_i)$  не изменяются, поэтому их вычисляют только один раз.

Аналогично определяют элементы вектора приведенных начальных зазоров  $\tilde{\delta}_{0}^{(3)}$  между поверхностями  $S_{3}$  и  $S'_{3}$ .

При определении вектора приведенных начальных зазоров между боковыми поверхностями зубьев S<sub>1</sub> и S<sub>1</sub>' функция начальных зазоров  $\delta_0^{(1)} \approx \sum_{i,j} \delta_{0ij}^{(1)} \frac{S_{ij}}{3} u_{ij}$  скалярно умножается на функции  $u_l^*$  (см. рис. 2), после чего формула для определения приведенного начального зазора в произвольном *l*-м поперечном сечении примет вид

$$\tilde{\delta}_{0l}^{(1)} = (\delta_0^{(1)}, u_l^*) = \sum_{k=1}^{N_{q_2}} \chi_{kl} \cdot \sum_{i,j} \delta_{0ij}^{(1)} \cdot \frac{S_{ij}}{3} \cdot (u_{ij}, u_{kl}), \quad (3)$$

где  $\delta_{0ij}^{(1)}$  – начальные зазоры в узлах сетки между боковыми поверхностями зубьев;  $S_{ij}$  – площадь поверхности, на которой функция  $u_{ij}$  отлична от нуля.

В формуле (3) используется двойная нумерация узлов исходной сетки. Суммирование по k выполняется для узлов, расположенных в одном поперечном сечении, суммирование по индексам i, j - для узлов, в которых скалярное произведение ( $u_{ij}, u_{kl}$ ) отлично от нуля.

Для определения элементов приведенной матрицы податливости  $\tilde{\mathbf{D}}^{(22)}$  к каждому узлу поверхностей  $S_2$  и  $S'_2$  поочередно прикладываются распределенные по поверхности силы  $p_l^{(2)} = P^* \cdot u_1$  ( $l = \overline{1, N_2}$ ;  $P^* = 1$ ). Определим приращения зазоров во всех узлах поверхностей  $S_2$  и  $S'_2$  (коэффициенты влияния) от действия этих единичных сил:

$$d_{kl}^{(22)} = d_{kl}^{(S_2)} + d_{kl}^{(S'_2)},$$

где  $d_{kl}^{(S_2)}$ ,  $d_{kl}^{(S_2)}$  – коэффициенты влияния поверхностей  $S_2$  и  $S'_2$ , которые равны приращениям зазора в *k*-м узле от действия распределенной силы  $p_l^{(2)}$ , приложенной к поверхностям  $S_2$  и  $S'_2$  соответственно.

При определении коэффициентов влияния любого элемента считали, что он не взаимодействует с другими элементами волновой передачи. Коэффициенты влияния гибкого колеса  $d_{kl}^{(S_2)}$  определяли с использованием линейной теории оболочек путем разложения решения в ряд Фурье и численного интегрирования полученных дифференциальных уравнений. Коэффициенты  $d_{kl}^{(S_2)}$  вычисляли методом конечных элементов. При определении этих коэффициентов предполагали, что диск испытывает плоское напряженное состояние. Коэффициенты влияния в различных продольных сечениях считали одинаковыми. Расчеты выполняли с использованием треугольных плоских конечных элементов. При расчете диск закрепляли таким образом, чтобы система была статически определимой. Тогда при действии на диск уравновешенной системы сил реакции в связях будут равны нулю и, следовательно, не окажут влияния на деформацию диска.

Приведенный коэффициент влияния  $\tilde{d}_{il}^{(22)}$ (элемент матрицы  $\tilde{\mathbf{D}}^{(22)}$ ) определяли по формуле (2), в которой начальные зазоры  $\delta_{0k}^{(2)}$  заменяли коэффициентом  $d_{kl}^{(22)}$ . Аналогично определяли элементы матрицы  $\tilde{\mathbf{D}}^{(33)}$ .

Рассмотрим определение элементов матрицы  $\tilde{\mathbf{D}}^{(11)}$ . В каждом поперечном сечении к боковым поверхностям зубьев  $S_1$  и  $S'_1$  прикладываются распределенные по поверхности силы  $p_n^{(1)} = P^* u_n^*$  ( $n = \overline{1, N_1}; P^* = 1$ ). Указанные распределенные силы направлены в сторону внутренних нормалей к поверхностям. От действия этих сил определяют коэффициенты влияния  $d_{(ij)n}$ . Для узлов сетки, в которых определяют перемещения, использовали двойную нумерацию. Непрерывная функция приращения зазоров между поверхностями  $S_1$  и  $S'_1$  от действия распределенной силы  $p_n^{(1)}$  с использованием линейной комбинации базисных функций представляется в виде

$$d_n^{(11)} \approx \sum_{i,j} d_{(ij)n}^{(11)} \frac{S_{ij}}{3} u_{ij}$$

Для определения приведенного коэффициента влияния  $\tilde{d}_{ln}^{(11)}$  функция  $d_n^{(11)}$  скалярно умножается на функцию  $u_l^*$ , в результате чего коэффициент  $\tilde{d}_{ln}^{(11)}$  можно определить по формуле (3), в которой зазор  $\delta_{0ij}^{(1)}$  необходимо заменить коэффициентом влияния  $d_{(ij)n}^{(11)}$ . Коэффициенты влияния  $d_{(ij)n}^{(11)}$  складываются

Коэффициенты влияния  $d_{(ij)n}^{(11)}$  складываются из коэффициентов влияния поверхностей  $S_1$  и  $S'_1$ :

$$d_{(ij)n}^{(11)} = d_{M(ij)n}^{(S_1)} + d_{O(ij)n}^{(S_1)} + d_{M(ij)n}^{(S_1')} + d_{O(ij)n}^{(S_1')}, \qquad (4)$$

где n — номер узла, к которому приложена базисная функция  $u_n^*$  (используется одномерная нумерация узлов исходной сетки); i, j — номера узлов по длине  $(q_1)$  и высоте  $(q_2)$  зубьев (см. рис. 2), в которых определяются перемещения (используется двойная нумерация узлов исходной сетки).

При определении коэффициентов влияния  $d_{M(\tilde{y})n}^{(S_1)}$  зуб жесткого колеса закрепляется на жестком основании. К нему прикладываются распределенные силы  $p_n^{(1)}$ . От действия этих сил определяются перемещения узловых точек зубьев жесткого колеса  $d_{M(\tilde{y})n}^{(S_1)}$ , которые учитывают деформации зубьев [4]. Расчеты выполняли методом конечных элементов с исполь-

зованием пространственных тетраэдральных элементов первого порядка. Аналогично вычисляются коэффициенты влияния зубьев гибкого колеса  $d_{M(\vec{w})n}^{(S_1)}$ .

При определении коэффициентов влияния жесткого колеса без учета зубьев  $d_{O(ij)n}^{(S_1)}$  его внутреннюю поверхность считали гладкой, т.е. предполагали малое влияние зубьев на деформацию жесткого колеса. К жесткому колесу прикладывали распределенные силы  $\mathbf{q}_{\tau} = -\mathbf{q}'_{\tau}$ ,  $\mathbf{q}_r = -\mathbf{q}'_{\tau}$ , полученные при расчете деформации зубьев жесткого колеса (при определении  $d_{M(ij)n}^{(S_1)}$ ). Распределенные по поверхности силы  $\mathbf{q}'_{\tau}, \mathbf{q}'_{r}$  представляют собой силы, которые действуют на зуб со стороны жесткого основания. Расчеты выполняли методом конечных элементов с использованием кольцевых элементов [7].

Коэффициенты влияния гибкого колеса без учета зубьев  $d_{O(jj)n}^{(S_1^r)}$  определяли аналогично. В отличие от жесткого колеса гибкое колесо заменяли ортотропной оболочкой с эквивалентными жесткостями в области зубчатого венца. Расчеты выполняли с использованием линейной теории оболочек.

Рассмотрим определение взаимной приведенной матрицы податливости  $\tilde{\mathbf{D}}^{^{(21)}}$ . К боковым поверхностям гибкого колеса  $S'_1$  поочередно прикладывали единичные распределенные по поверхности силы  $p_n^{(1)}$ . От действия этих единичных сил определяли приращения зазоров в узловых точках поверхности  $S_2$  (коэффициенты влияния), которые обозначаются  $d_{kn}^{(21)}$ . Приведенные коэффициенты влияния  $\tilde{d}_{in}^{(21)}$  определяли по формуле (2), в которой  $\delta_{0k}^{(2)}$  заменяли величиной  $d_{kn}^{(21)}$ .

Аналогично можно определить элементы других взаимных приведенных матриц податливости.

На рис. 3 представлена схема, поясняющая определение матрицы  $\tilde{\mathbf{G}}^{(22)}$ . При смещении первого диска на вектор  $\mathbf{a}_2$  произвольная точка M получит смещение в направлении нормали  $\mathbf{v}_{\mu}$ :

$$g_{2M} = \mathbf{g}_2 \cdot \mathbf{a}_2,$$

где  $\mathbf{g}_2 = (-\cos \psi_M, -\sin \psi_M).$ 

В области определения базисной функции  $u_k$ угол  $\psi_M$  (см. рис. 3) изменяется незначительно. Следовательно, в указанной области его можно принять постоянным. Тогда для определения приведенных коэффициентов матрицы  $\tilde{\mathbf{G}}^{(22)}$ интегрирование можно не проводить. Погреш-



Рис. 3. Схема диска генератора волн (*a*) и развертка на плоскость поверхности  $S'_{2}(\delta)$ 

ность вычисления не превысит 0,5 %. С учетом сделанного замечания матрицу  $\tilde{\mathbf{G}}^{\scriptscriptstyle(22)}$  можно определить следующим образом:

$$\tilde{\mathbf{G}}^{(22)} = \begin{pmatrix} -\cos\psi_1 & -\sin\psi_1 \\ \\ \\ -\cos\psi_{N_2} & -\cos\psi_{N_2} \end{pmatrix}$$

Аналогично можно определить матрицы  $\tilde{\mathbf{G}}^{_{(11)}}, \tilde{\mathbf{G}}^{_{(33)}}, \mathbf{G}^{_{(42)}}, \mathbf{G}^{_{(44)}}, \mathbf{G}^{_{(53)}}, \mathbf{G}^{_{(54)}}.$ 

Для решения системы (1) можно использовать методы расчета упругих систем, ограниченных односторонними связями. При этом вместо зазоров в системе с односторонними связями используются приведенные зазоры, а вместо реакций в системе с односторонними связями – равнодействующие узловых распределенных по поверхности сил  $P_j^{(1)}u_j^*$ ,  $P_k^{(2)}u_k$ ,  $P_k^{(3)}u_k$ . В данной работе использован метод введения восстанавливающих сил [8].

#### Результаты исследования

По предложенной методике проведен силовой расчет волновой передачи, изображенной на рис. 1. Эта передача спроектирована на кафедре ТММ МГТУ им. Н.Э. Баумана и имеет следующие основные параметры: число зубьев гибкого колеса  $Z_g = 198$ , число зубьев жесткого колеса

 $Z_B = 200$ , модуль зацепления m = 1 мм, толщину обода гибкого колеса под зубчатым венцом  $h_1 = 0,9$  мм, ширину зубчатого венца  $b_w = 20$  мм, длину оболочки гибкого колеса l = 210 мм, толщину оболочки гибкого колеса  $h_3 = 0,8$  мм, наружный диаметр дисков  $D_p = 189,45$  мм, толщину обода жесткого колеса под зубчатым венцом  $h_2 = 12$  мм. Зубья гибкого колеса нарезаны в деформированном состоянии на дисках волнообразователя.

В работе [5] экспериментальным путем были определены радиальные отклонения ободов гибкого и жесткого колес от начальных кривых при различных моментах, действующих на жесткое колесо  $M_B$ . Отклонения определяли в торцевом сечении жесткого колеса А–А (см. рис. 1) со стороны, не соприкасающейся с диском. Под начальными кривыми ободов гибкого и жесткого колес понимаются кривые наружных поверхностей этих колес при  $M_B = 0$ . В работе [5] приведены также осевые перемещения торца оболочки гибкого колеса в точке *B* (см. рис. 1).

Для исключения влияния отверстий на дисках на результаты измерений в работе [5] радиальные отклонения ободов определяли методом обращенного движения. Для этого волнообразователь с помощью входного вала редуктора последовательно поворачивали на  $7^{\circ}30'$  и закрепляли неподвижно. На валу жесткого колеса создавали крутящий момент  $M_B$ . При этом радиальные отклонения обода жесткого колеса определяли всегда в одной и той же точке. Аналогично определяли радиальные отклонения обода гибкого колеса.

Как показывают расчеты, изменение формы гибкого и жесткого колес при увеличении нагрузки сильно зависит от распределения сил, действующих на них. В связи с этим для подтверждения адекватности предложенной математической модели силового расчета волновой передачи расчетным путем были определены радиальные отклонения ободов гибкого и жесткого колес от начальных кривых при  $M_{p}=1500 \text{ H}\cdot\text{м}$  и осевые перемещения торца гибкого колеса. Результаты расчета и эксперимента, проведенного в работе [5], представлены на рис. 4, 5. По горизонтальной оси отложен угол Θ между большой осью генератора волн и сечением, в котором определяли радиальные перемещения. Момент М<sub>в</sub> направлен в противоположную сторону положительного отсчета угла  $\Theta$ .

50



Рис. 4. Радиальные отклонения обода жесткого колеса (*a*) и гибкого колеса (*б*): --- эксперимент; —— – расчет



Рис. 5. Осевые перемещения торца гибкого колеса: --- эксперимент; — расчет

# Заключение

По предложенной методике определения силового взаимодействия элементов волновой передачи с дисковым генератором волн проведен расчет радиальных перемещений ободов гибкого и жесткого колес, осевых перемещений торца гибкого колеса. Сравнение результатов расчета с результатами эксперимента показало, что использованная математическая модель волновой передачи адекватно описывает силовое взаимодействие ее элементов.

# Список литературы

- 1. *Ковалев Н.А.* Передачи гибкими колесами. М.: Машиностроение, 1979. –200 с.
- 2. Клеников С.С. Волновая передача как упругая система с односторонними связями //

Изв. вузов. Сер. Машиностроение. 1978. № 10. С. 51 – 55.

- 3. Шувалов С.А. Расчет сил, действующих на звенья волновой передачи // Вестник машиностроения. 1979. № 10. С. 5 9.
- Люминарский И.Е., Люминарский С.Е. Расчет сил взаимодействия элементов волновой зубчатой передачи // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2011. Спец. вып. «Энергетическое и транспортное машиностроение». С. 230–240.
- 5. Скворцова Н.А., Комаров В.А., Евдокимов А.Ф. Экспериментальное определение деформаций элементов волновой передачи // Труды МВТУ. Теория механизмов. 1970. № 140. Вып. 5. С. 11 – 25.
- Марчук Г.И. Методы вычислительной математики: учебное пос. – М.: Наука. Гл. ред. физ.-мат. лит., 1989. С. 122–126.
- Мяченков В.И., Мальцев В.П., Майборода В.П. и др. Расчеты машиностроительных конструкций методом конечных элементов. / под общ. ред. В.И. Мяченкова: справочник. – М.: Машиностроение, 1989. – 520 с.
- Люминарский И.Е., Люминарский С.Е. Метод расчета линейных систем, ограниченных односторонними связями, при статическом нагружении // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2009. № 2. С. 84–90.

Материал поступил в редакцию 29.02.2012

# ЛЮМИНАРСКИЙ Станислав Евгеньевич

Кандидат технических наук, доцент кафедры теории механизмов и машин МГТУ им. Н.Э. Баумана. Сфера научных интересов – динамика и прочность зубчатых механизмов. Автор более 10 научных публикаций.

E-mail: **katjstas@mail.ru** Тел.: +7(495) 714-37-86 (дом.), (916) 594-54-35 (моб.)

# ЛЮМИНАРСКИЙ Игорь Евгеньевич

E-mail: **lie260@mail.ru** Тел.: **+7(495) 423-11-17**  Доктор технических наук, профессор кафедры теоретической механики и теории механизмов ФГБОУ ВПО «МГИУ». Сфера научных интересов – динамика и прочность зубчатых механизмов. Автор более 20 научных публикаций, в том числе монографии.

Уважаемые читатели!

Журнал «Машиностроение и инженерное образование» входит в Перечень ведущих рецензируемых научных журналов и изданий, в которых публикуются основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук.