ИСПОЛЬЗОВАНИЕ ПАРАМЕТРОВ ВЗАИМОДЕЙСТВИЯ ДЛЯ АНАЛИЗА ИЗОТЕРМИЧЕСКОГО МАССОПЕРЕНОСА В МЕТАЛЛИЧЕСКИХ РАСПЛАВАХ

КРАСИН Валерий Павлович

Доктор физико-математических наук, профессор, заведующий кафедрой физики МГИУ. Специалист в области материаловедения ядерных энергетических установок. Автор боле 70 научных трудов.

Введение

В качестве теплоносителей для реакторов на быстрых нейтронах (БН) применяются (или рассматриваются в качестве возможных) расплавленные жидкие металлы с относительно низкой температурой плавления (натрий, калий, литий, свинец, висмут) [1]. Жидкий литий, литийсодержащие металлические расплавы и твердые соединения можно использовать в качестве основных тритийвоспроизводящих бланкетных материалов в испытательных термоядерных установках, которые рассматриваются как прототипы энергетического термоядерного реактора (ТЯР).

© В.П. Красин, С.И. Союстова, 2008

В.П. Красин, С.И. Союстова

Определенные трудности при использовании жидких металлов в качестве теплоносителей создает их относительно высокая агрессивность по отношению к конструкционным материалам, проявляющаяся в поверхностных и объемных изменениях состава, структуры и свойств металлов и сплавов, а в ряде случаев и в их разрушении. Изучению закономерностей переноса массы твердых металлов в жидких легкоплавких металлах, таких как Na, Li, Pb, Bi, K посвящен целый ряд исследований [2–5]. Однако на основании приведенных в этих работах моделей нельзя заранее предсказать направление преимущественного переноса массы между двумя произвольными металлами, разделенны-

СОЮСТОВА Светлана Игоревна

Ассистент кафедры физики МГИУ. Область научных интересов — материаловедение ядерных энергетических установок.

ми расплавом, в том случае, когда в последнем присутствует неметаллическая примесь (азот, кислород и др.).

В данной работе для прогнозирования массопереноса в таких жидкометаллических системах предлагается использовать методику, основанную на расчете параметров взаимодействия по координационно-кластерной модели с тремя типами взаимодействия [6].

Основные уравнения

Рассмотрим процессы, протекающие в системе, состоящей из двух твердых металлов А, и А₂, разделенных расплавом металла А₃, в котором в качестве примеси присутствуют атомы неметалла А₄ (рис. 1). Очевидно, что наряду с процессами растворения твердых металлов А, и А, в расплаве будет происходить осаждение атомов этих металлов на поверхность твердых металлов. Известно [3], что в результате этих процессов химический состав поверхности обоих материалов выравнивается. В наиболее часто встречающемся случае оба растворенных металла при осаждении образуют твердые растворы. Когда растворимость металла А, в расплаве значительно превосходит растворимость А2, величина изотермического массопереноса¹ элемента А₁ на поверхность металла А2 описывается следующим уравнением [7]:

$$\left(\Delta m_{2} / \Delta S_{2}\right)^{2} = 2bD_{1(2)}C_{1}\tau + + 2bD_{1(2)}C_{1}V \cdot \left[1 - \exp\left(-kS\tau/V\right)\right] / (kS), \quad (1)$$

где $\Delta m_2/\Delta S_2$ – изменение массы металла A_2 , отнесенное к единице его поверхности, контактирующей с расплавом; b – константа, зависящая от плотности A_1 и геометрии системы; $D_{1(2)}$ – коэффициент диффузии A_1 в твердом растворе на основе A_2 ; C_1 – растворимость A_1 в расплаве при данной температуре; τ – продолжительность массопереноса; V – объем расплава; S – поверхность металла A_1 контактирующая с расплавом; k – константа скорости растворения A_1 . Как следует из уравнения (1), через определенный промежуток времени второе слагаемое в правой части выражения практически перестает зависеть от времени и при достаточно больших значениях τ им можно пренебречь.

В том случае, когда растворимости металлов A_1 и A_2 в расплаве являются величинами одного порядка, отношение ($\Delta m_2/\Delta S_2$) будет изменяться с течением времени в зависимости от вклада каждого из двух конкурирующих процессов: осаждения A_1 из расплава и растворения A_2 в расплаве. Скорость второго процесса будет ограничиваться скоростью диффузии атомов A_2 в расплав через слой твердого раствора, образующегося на поверхности металла A_2 в результате осаждения A_1 . Следовательно, в этом случае

Рис. 1. Схема изотермического переноса массы: 1, 2 – металлы A₁ и A₂ в твердом состоянии; 3 – слой твердого раствора на поверхности A₁, образующийся в результате взаимодействия A₁ и A₂; 4 – то же, но на поверхности металла A₃; 5 – расплав

¹Изотермическим массопереносом называется перенос массы, который происходит при равенстве температур на поверхности обоих металлов и в расплаве.

можно записать:

 $\Delta m_2 / \Delta S_2 = f (D_{1(2)}, D_{2(1)}, C_1, C_2, \tau),$ (1а) где f – некоторая функция; $D_{2(1)}$ – коэффициент диффузии A_2 в твердом растворе на поверхности металла A_1 ; C_2 – растворимость A_2 в расплаве. Очевидно, что зависимость, аналогичная (1а), будет существовать и для величины ($\Delta m_2 / \Delta S_2$).

Обозначим через C_4 концентрацию неметаллической примеси A_4 в расплаве. Если ни на одной из поверхностей, контактирующих с расплавом, не образуется химических соединений, содержащих A_4 , то значения $D_{1(2)}$ и $D_{2(1)}$ не будут зависеть от C_4 . В этом случае влияние примеси A_4 на массоперенос будет проявляться только посредством изменения значений C_1 и C_2 в расплаве, содержащем примесь, по сравнению с их величинами в чистом расплаве. Таким образом, на основании зависимостей C_1 от C_4 и C_2 от C_4 можно делать предварительные оценки относительно влияния примеси A_4 на процессы массопереноса в жидкометаллических системах.

Чтобы найти связь между значениями растворимостей металлов A_1 и A_2 в расплаве и содержанием A_4 , воспользуемся математическим аппаратом параметров взаимодействия [8]. Если ограничиться наиболее часто встречающимися на практике² системами, в которых ($C_1+C_2+C_4$) $\leq 0,01$ мол. доли, то для расчета коэффициента активности A_4 в расплаве можно воспользоваться следующим соотношением:

$$\ln \gamma_{1(1-2-3-4)} = \ln \gamma_{1(1-3)} + \varepsilon_1^2 C_2 + \varepsilon_1^4 C_4,$$
(2)

$$\ln \varepsilon_1^2 = \left(\partial \ln \gamma_{1(1-2-3)} / \partial C_2 \right)_{C_3 \to 1},$$

где $\varepsilon_1^2 = (\partial \ln \gamma_{1(1-2-3)} / \partial C_2)_{C_3 \to 1}$, $\varepsilon_1^4 = (\partial \ln \gamma_{1(1-3-4)} / \partial C_4)_{C_3 \to 1}$ – параметры взаимодействия; $\gamma_{1(1-3)}$, $\gamma_{1(1-2-3)}$, $\gamma_{1(1-3-4)}$, $\gamma_{1(1-2-3-4)}$ – коэффициенты активности A_1 в системах A_1 – A_3 , A_1 – A_2 – A_3 , A_1 – A_3 – A_4 и A_1 – A_2 – A_3 – A_4 соответственно. Опыт использования легкоплавких металлов в качестве теплоносителей показывает, что при тех низких значениях растворимости A_1 и A_2 в расплавах, которые имеют место на практике, взаимодействием между A_1 и A_2 в расплаве можно пренебречь. Тогда второе слагаемое в правой

части (2) можно принять равным нулю и

$$\ln \gamma_{1(1-2-3-4)} = \ln \gamma_{1(1-3)} + \varepsilon_1^4 C_4.$$
 (3)

Известно, что прямой параметр взаимодействия ε_1^4 равен сопряженному ε_1^4 [8]. Для расчета ε_1^4 в системах, представляющих расплавы двух металлов (A₁ и A₃) и одного неметалла A₄, воспользуемся уравнением координационно-кластерной модели [6], которая дает следующее выражение для параметра взаимодействия:

$$\varepsilon_{4}^{1} = \varepsilon_{1}^{4} = -z \left\{ \gamma_{1}^{t} \left(\gamma_{4(3)} / \gamma_{4(1)} \right)^{1/z} \exp\left[-(z-1) h / (2RT) \right] - 1 \right\},$$
(4)

где γ_1 – коэффициент активности A_1 в системе $A_1 - A_3$ при $C_1 \rightarrow 0$; параметр *t* характеризует относительное ослабление связей типа металлических атомов; *z* – координационное число неметаллических атомов в расплаве; *R* – универсальная газовая постоянная; *T* – абсолютная температура; *h* – энергетический параметр, который является постоянной величичиной для данной тройной системы и может быть вычислен из термодинамических данных [6].

Переходя от коэффициентов активности к растворимостям, по аналогии с трехкомпонентными системами [8], для четырехкомпонентных систем получаем:

$$_{-2-3)} = C_{1(1-3)} \exp(-\varepsilon_1^4 C_4),$$
 (5)

где $C_{1(1-3)}$ и $C_{1(1-2-3-4)}$ растворимости A_1 в системах $A_1 A_3$ и $A_1 A_2 A_3 A_4$ соответственно. Уравнения, аналогичные (4) и (5), могут быть записаны и для вычисления величин ϵ_1^4 и $C_{2(1-2-3-4)}$.

 $C_{1(1)}$

Для того, чтобы использовать (5) для прогнозирования направления преимущественного переноса массы, кроме ε_1^4 и ε_2^4 , необходимо также знать соответствующие величины $C_{1(1-3)}$ и $C_{2(2-3)}$. Однако для жидкометаллических систем, представляющих практический интерес (Na Fe, Na Ni, Na Mo и др.), в интервале 500–1300 К растворимости $C_{1(1-3)}$ и $C_{2(2-3)}$ малы по величине (<10⁻⁵ мол. доли), и их экспериментально полученные значения имеют существенный разброс. Поэтому в настоящей работе делается попытка прогно-

²Имеются в виду те области техники, где жидкие металлы используются в качестве теплоносителей [3]. Роль А₁ и А₂ в этом случае принадлежит материалам, из которых изготовлены детали жидкометаллического контура.

Рис. 2. Температурные зависимости параметров взаимодействия ε_{Me}^{0} для металлов: Ni (1), Fe (2), Mo (3), Nb (4) в системах Me – Na – O

зировать направление массопереноса на основании результатов расчета параметров взаимодействия.

Используя (4), были проведены расчеты для следующих трехкомпонентных систем: Ni – Na – O, Fe – Ni – O, Mo – Na – O, Nb – Na – O (рис. 2).

Анализ результатов исследований

Для экспериментального исследования массопереноса были выбраны три жидкометаллических системы: Fe – Ni – Na – O, Fe – Nb – Na – O и Fe – Mo – Na – O. Для удобства в дальнейшем будем именовать их: система 1, система 2 и система 3 соответственно. Изотермические выдержки проводились в статических условиях при 800° C в герметичных контейнерах в течение 100 ч. Колебания температуры не превышали 5° C от номинального значения. Отношение объема жидкого металла к поверхности образцов составляло 0,4 см. За основную характеристику массопереноса принималось изменение массы единицы поверхности образцов после совместных выдержек в жидком металле ($\Delta m_2/\Delta S_2$, мг/см²). Отрицательные значения этого показателя для материала свидетельствуют о преимущественном его растворении в расплаве. В том случае, когда скорость осаждения растворенных в расплаве элементов на поверхность исследуемого металла превышает скорость растворения самого металла, наблюдается положительное изменение массы. Методика обеспечивала воспроизводимость результатов на уровне 15–20%.

Как следует из полученных результатов (см. таблицу), в системах 1 и 3 преобладал перенос железа, а в системе 2 – ниобия. Если расположить металлы, являющиеся компонентами систем 1, 2 и 3 в порядке возрастания абсолютных значений параметра взаимодействия с кислородом при 800° С (рис. 2), то получим следующий ряд: Ni, Mo, Fe, Nb. Представленные в таблице данные показывают, что в исследованных системах преимущественный перенос массы происходит от металла с наибольшим значением параметра взаимодействия к металлу, у которого аб-

Таблица

Система	Контейнер	$\Delta S_1 / \Delta S_2$	[O], %	$\Delta m_1/\Delta S_1,$ Mg/cm ²	$\Delta m_2/\Delta S_2,$ Mg/cm ²
1	Fe	2,4	0,1	-4,7	10,6
2	Fe	2,4	0,5	0,8	-47,6
3	Мо	0,48	0,5	-21,8	8,1

Характеристики массопереноса в исследуемых системах

солютное значение этого параметра меньше. Чтобы понять, что это означает с физической точки зрения, вернемся к формуле (5).

Растворимость твердого металла в расплаве можно условно представить состоящей из двух частей: истинной физической растворимости $C_{1(1-3)}$ и растворимости, обусловленной взаимодействием между атомами металла и атомами неметаллической примеси в расплаве. Установленная корреляция между направлением массопереноса и значениями параметров взаимодействия свидетельствует о преимущественном вкладе второй составляющей растворимости.

Сравнение параметров взаимодействия с экспериментальными данными [10] показывает, что установленная закономерность справедлива и для литийсодержащих систем, в которых в качестве примеси присутствует азот [11].

Заключение

На основе анализа результатов изотермического переноса массы в системах Fe–Ni–Na–O, Fe–Nb–Na–O и Fe–Mo–Na–O при 800 °C показана применимость уравнений координационнокластерной модели для прогнозирования коррозионных процессов в жидких металлах в присутствии неметаллических примесей.

Установлена корреляция между величинами параметров взаимодействия первого порядка в жидкой фазе атомов растворяющегося твердого металла с атомами неметалла и направлением преимущественного переноса массы в гетерогенной системе. Преимущественный перенос массы в статических изотермических условиях происходит от металла с наибольшим значением параметра взаимодействия к металлу, у которого абсолютное значение этого параметра меньше.

Таким образом, предварительная оценка на-

правления преимущественного переноса массы в жидкометаллической системе, содержащей неметаллическую примесь, может быть проведена на основании сравнения параметров взаимодействия. Необходимо, однако, учитывать, что данная методика основывается на многих допущениях (отсутствие химических соединений с участием неметаллов, низкие значения растворимостей компонентов и др.), и получаемые с ее помощью прогнозные оценки носят вероятностный характер.

Список литературы

- Стратегия развития атомной энергетики России в первой половине XXI века. Основные положения. – М.: ЦНИИАтоминформ, 2000. – 32 с.
- Lyublinski I.E., Evtikhin V.A., Krasin V.P. Numerical and Experimental Determination of Metallic Solubilities in Liquid Lithium, Lithium-containing Nonmetallic Impurities, Lead and Lead-Lithium Eutectic // J. Nucl. Mater. 1995. V. 224. № 3. P. 288–292.
- Коррозия конструкционных материалов в жидких щелочных металлах / Под ред. Б.А. Невзорова. – М.: Атомиздат, 1977. – 264 с.
- Polley M.V., Skyrme G. An analysis of the corrosion of pure iron in sodium loop systems // J. Nucl. Mater. 1977. V. 66. № 3. P. 221.
- Бескоровайный Н.М., Иолтуховский А.Г. Конструкционные материалы и жидкометаллические теплоносители. – М.: Энергоатомиздат, 1983. – 168 с.
- Saboungi M.-L., Caveny D., Bloom I., Blander M. The Coordination Cluster Theory: Extension to Multicomponent Systems // Metall. Trans. A. 1987. V.18A. P. 1779–1783.
- 7. Никитин В.И. Физико-химические явления

при воздействии жидких металлов на твердые. – М.: Атомиздат, 1967. – 441 с.

- Люпис К. Химическая термодинамика материалов: Пер. с англ. М.: Металлургия, 1989. – 503 с.
- Krasin V.P. Application of Solution Models for the Prediction of Corrosion Phenomena in Liquid Metals // Liquid Metal Systems Material Behavior and Physical Chemistry in Liquid Metal Systems / Ed. H.U. Borgstedt, G. Frees. – N.Y.: Plenum Press, 1995. P. 305–309.
- Плеханов А.Т., Федорцов-Лутиков Г.П., Глушко Ю.В. // Атомная энергия. 1978. Т. 45. № 2. С. 143.
- Красин В.П., Бескоровайный Н.М., Люблинский И.Е. Термодинамическая модель для прогнозирования коррозионной стойкости конструкционных материалов в жидких литии и натрии, содержащих неметаллические примеси // Физика и химия обработки материалов. 1987. № 1. С. 45–48.