О ТОЧНОСТИ ОПРЕДЕЛЕНИЯ НЕСИНГУЛЯРНЫХ КОМПОНЕНТ ПОЛЯ НАПРЯЖЕНИЙ В ВЕРШИНЕ ТРЕЩИНЫ С ПРИМЕНЕНИЕМ МЕТОДА ЭКСТРАПОЛЯЦИИ*

И.А. Литвинов, Ю.Г. Матвиенко, И.А. Разумовский

Изложена методика определения сингулярных и несингулярных составляющих поля напряжений в зоне трещины при наличии погрешностей исходных данных, обусловленных неточностями эксперимента или моделирования. На основе численных экспериментов показано, что метод разложения по собственным функциям решения задачи теории упругости о клиновидных вырезах (функциям Вильямса) обеспечивает возможность определения искомых параметров с достаточной для практики точностью даже при наличии значительной погрешности. Предложен способ приближенной оценки размеров области, в которой не выполняются условия моделирования плоской упругой задачи, обусловленные наличием пластических деформаций, особенностями геометрии или другими факторами.

Ключевые слова: трещина, двухпараметрическая механика разрушения, методы оценки сингулярных и несингулярных составляющих поля напряжений; погрешности моделирования, зона пластичности

Введение

Развитие современной механики разрушения тесно связано с формированием двухпараметрических моделей и критериев, которые в отличие от классической механики разрушения, оперирующей лишь сингулярной составляющей поля напряжений у вершины трещины (например, коэффициентами интенсивности напряжений), вводят в рассмотрение также и несингулярные составляющие – Т-напряжения. Это обусловлено, прежде всего, тем, что исследования трещиностойкости конструкционных материалов свидетельствуют о значительном влиянии геометрии образцов, схемы нагружения и толщин на характеристики трещиностойкости. Результаты аналитических и численных расчетов показывают, что на напряженнодеформированное состояние (НДС) в окрестности вершины трещины во многих случаях существенное влияние оказывают параметры локального стеснения деформаций, в том числе

несингулярные составляющие поля напряжений T_{xx} и T_{yy} [1]. Именно это приводит к значительному влиянию длины трещины, геометрии образцов и схемы их нагружения на размер зоны пластической деформации в вершине трещины, характеристики статической трещиностойкости, закономерности роста усталостной трещины и ее траекторию [2–7]. Нивелировать вышеприведенные эффекты позволяет введение в критериальные соотношения дополнительного параметра, а именно, несингулярных напряжений [5–7].

Таким образом, знание несингулярных напряжений является необходимой составляющей расчета на трещиностойкость на основе двухпараметрических подходов и критериев. Цель работы заключалась в разработке методического подхода к определению *T*-напряжений, обеспечивающего достаточную для практики точность результатов даже при наличии значительных погрешностей исходных данных.

^{*} Работа выполнена при поддержке гранта РНФ, проект 14-19-00383.

Оценка влияния погрешности исходных данных на точность определения Т-напряжений

В общем случае поле упругих напряжений в окрестности вершины трещины смешанного типа (I+II) с учетом первых компонентов несингулярных членов разложения (T_{xx} - и T_{zz} напряжений) имеет следующий вид [8]:

$$\sigma_{xx} = \frac{1}{\sqrt{2\pi r}} \begin{bmatrix} K_I \cos\frac{\theta}{2} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) - \\ -K_{II} \sin\frac{\theta}{2} \left(2 + \cos\frac{\theta}{2}\cos\frac{3\theta}{2}\right) \end{bmatrix} + T_{xx}, \\ \sigma_{yy} = \frac{1}{\sqrt{2\pi r}} \begin{bmatrix} K_I \cos\frac{\theta}{2} \left(1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) + \\ +K_{II} \sin\frac{\theta}{2} \left(\cos\frac{\theta}{2}\cos\frac{3\theta}{2}\right) \end{bmatrix}, \\ \sigma_{xy} = \frac{1}{\sqrt{2\pi r}} \begin{bmatrix} K_I \sin\frac{\theta}{2} \left(\cos\frac{\theta}{2}\cos\frac{3\theta}{2}\right) + \\ +K_{II} \cos\frac{\theta}{2} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) \end{bmatrix}, \\ \sigma_{zz} = \frac{2\nu}{\sqrt{2\pi r}} \begin{bmatrix} K_I \cos\frac{\theta}{2} - K_{II} \sin\frac{\theta}{2} \end{bmatrix} + T_{zz}, \\ T_{-} = E\varepsilon_{-} + \mu T_{-}. \end{bmatrix}$$

Здесь *x*, *y*, *z* и *r*, θ , *z* – локальные декартовы и полярные координаты, связанные с вершиной трещины *O* (рис. 1); *K*₁, *K*₁₁ – коэффициенты интенсивности напряжений (КИН); σ_{ij} – компоненты тензора напряжений (*i*, *j* = *x*, *y*, *z*); ε_{zz} – деформации вдоль оси *z*; *T*_{xx} – напряжения, действующие в направлении возможного распространения трещины и отражающие стеснение деформаций перед ее фронтом; *T*_{zz} – напряжения, действующие вдоль оси *z* и отражающие влияние толщины образцов на трещиностойкость материала [9, 10]; *E*, μ – модуль упругости и коэффициент Пуассона материала.

При расчете параметров механики разрушения K_I и T_{xx} – напряжений на основе численных решений соответствующих краевых задач, как правило, используются процедуры экстраполяции их значений, вычисленных по взаимным смещениям точек противоположных берегов трещины в точку r = 0. При этом K_I определяется по известным зависимостям [11]

$$\begin{cases} A_1 + B_1 r = \sqrt{2\pi} \frac{2G}{1 + \kappa} \frac{|\Delta v|}{\sqrt{r}}; \\ K_1 = A_1 \end{cases}$$
(2)

где к – коэффициент, зависящий от типа НДС (плоская деформация или плоское напряженное состояние) и коэффициента Пуассона; G – модуль сдвига; v – смещения вдоль оси y; A_1 и B_1 – коэффициенты экстраполирующей прямой, определяемые по взаимным перемещениям точек берегов трещины для нескольких значений $r = r_i$.

Определение T_{xx} -напряжений выполняется по напряжениям на берегах трещины по формуле, получаемой из соотношений (1)

$$T_{xx} = \frac{1}{2} \Big[\sigma_{xx} \Big|_{\theta = -\pi} + \sigma_{xx} \Big|_{\theta = \pi} \Big].$$
(3)

При определении T_{xx} на основе результатов расчетов методом конечных элементов (МКЭ) используются значения напряжений σ_{xx} в узлах конечно-элементной сетки.

Точность определения искомых параметров может быть достаточно высокой, так как при расчете НДС численными методами с использованием современных программных комплексов ошибки определения напряжений и перемещений могут быть относительно малыми.

В случаях, если требуется определить K_I и T_{xx} -напряжения на основе обработки экспериментальных данных, когда результаты измерений всегда имеют определенные погрешности, задача становится более сложной. При этом отметим, что поскольку на свободных поверхностях $T_{zz} = 0$, проблемы с их определением на основе обработки экспериментальных данных не возникает.

Даже при применении современных экспериментальных методов исследований полей перемещений или деформаций (в первую очередь методов электронной цифровой спекл-

Рис. 1. Локальные системы координат, связанные с фронтом трещины

44

интерферометрии [12], корреляции цифровых изображений [13] или фотоупругих покрытий [14]), обеспечивающих возможность получения значительных массивов экспериментальной информации в виде двух или трехмерных полей перемещений, деформаций или напряжений, всегда имеет место «инструментальная» погрешность. Кроме того, при проведении исследований непосредственно на натурных конструкциях или образцах с трещинами всегда имеет место погрешность, обусловленная тем, что реальная геометрия зоны трещины может существенно отличаться от идеальной модели математического разреза, соответствующей постановке задачи теории упругости о трещине.

Для оценки влияния погрешности исходных данных на величину T_{xx} -напряжений методом экстраполяции была проведена серия расчетов по МКЭ для модельной краевой задачи о сквозной трещине длиной 2a в прямоугольной пластине, нагруженной на границах безразмерными напряжениями $\sigma_{yy}^{\infty} = \sigma$, $\sigma_{xx}^{\infty} = \lambda \sigma$, где λ – коэффициент двухосности [1] (рис. 2).

В расчетной модели размеры пластины в направлениях осей *x* и *y* равнялись 20a, что практически исключало влияние границ пластины на НДС в зоне трещины. Как известно, для этой задачи теоретическое значение $K_1 = \sigma \sqrt{\pi a}$.

Расчет НДС проводился с использованием программной среды ANSYSv14.5; использовались плоские четырехузловые элементы первого порядка PLANE 182. Для определения T_{xx} -напряжений методом экстраполяции в узловых точках КЭ-сетки была разработана соответствующая программа в математическом комплексе Wolfram Mathematica.

Фрагмент конечно-элементной сетки для расчетной части пластины в окрестности вершины трещины приведен на рис. 3, где также показаны расчетные точки с координатами r_i , используемые в процедуре экстраполяции для определения T_{xx} -напряжений.

Рис. 2. Схема нагружения пластины с трещиной

Рис. 3. Конечно-элементная сетка в окрестности вершины трещины и расчетные точки, используемые при определении *T_{xx}*-напряжений

После проведения расчетов НДС в найденные «точные» значения напряжений $\sigma_{xx}^*(x, y)$, используемых при определении T_{xx} -напряжений (3), с помощью датчика случайных чисел вносилась погрешность (с заданным диапазоном разброса относительной погрешности $\delta \sigma_{xx}^{max}$). Результаты расчетов погрешности оценки T_{xx} -напряжений ($\Delta \overline{T}_{xx}$) представлены в табл. 1, где $\Delta \overline{T}_{xx} = \left[\left(T_{xx} - T_{xx}^0 \right) / T_{xx}^0 \right] \times 100\%$, T_{xx}^0 – величины напряжений T_{xx} , приведенные в [1].

Таблица 1

при использовании метода экстраполяции									
$\delta\sigma_{xx}^{\max}, \%$	$\lambda = -1$	$\lambda = -0.5$	$\lambda = 0$	$\lambda = 0,5$					
0	4	4,5	2	10					
10	39	8,7	3	27					
15	58,5	15,4	4	36					
15	58,5	15,4	4	36					

Влияние погрешности исходных данных на величину ΔT_{xx} (%) при использовании метода экстраполяции

Анализ представленных в табл. 1 результатов показывает, что погрешность исходных данных существенно влияет на точность определения T_{xx} -напряжений методом экстраполяции. Например, при диапазоне разброса погрешностей $\delta\sigma_{xx}^{max} = 10\%$ в зависимости от величины параметра λ указанные погрешности достигают недопустимых для практики значений (до 27% при $\lambda = 0,5$ и 39% при $\lambda = -1$). Отметим, что погрешность определения величины $\overline{K}_I = K_I / \sigma \sqrt{\pi a}$ во всех случаях не превышала величины разброса погрешности исходных данных, что следует признать приемлемым результатом.

Определение параметров механики разрушения на основе обработки двухмерного массива полей напряжений

В основе используемого подхода лежит определение искомых параметров как коэффициентов разложения полей перемещений (или напряжений, деформаций) по собственным функциям решения задачи теории упругости через функции напряжений для клиновидных вырезов – функции Вильямса [15]

$$\Phi(r, \theta) = \sum_{n=1}^{\infty} r^{n/2+1} f(\theta); \qquad (4)$$

$$f(\theta) = a_n \left[\sin \left(q - 1 \right) \theta - \frac{q - 1}{q + 1} \sin \left(q + 1 \right) \theta \right] +$$

+ $b_n \left[\cos \left(q - 1 \right) \theta - \cos \left(q + 1 \right) \theta \right];$
$$q = \frac{n}{2}, a_1 = \frac{K_I}{\sqrt{2\pi}}, b_1 = \frac{K_H}{\sqrt{2\pi}}, a_2 = T_{xx},$$

где a_n , b_n – коэффициенты при симметричной и кососимметричной составляющих функции $\Phi(r, \theta)$.

В соответствии с этим решением напряжения ния σ_{xx} определяются следующим выражением:

$$\sigma_{xx} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) + T_{xx} + \sum_{n=3}^{N} \left(\frac{n}{2} a_n \right) r^{\frac{n}{2}-1} \times \begin{cases} \left[2 + (-1)^n + \frac{n}{2} \right] \cos \left(\frac{n}{2} - 1 \right) \theta - \\ -\left(\frac{n}{2} - 1 \right) \cos \left(\frac{n}{2} - 3 \right) \theta \end{cases}$$
(5)

46

Искомые параметры K_I и T_{xx} , а также другие коэффициенты $a_n, b_n (n = 3, 4, ...N)$ находятся из условия минимума среднего квадратичного отклонения величин напряжений, определяемых выражениями (5), от их значений в соответствующих точках, полученных путем расчетов (или экспериментальной регистрации) в значительном количестве точек ($i \gg N$) на основе метода наименьших квадратов. Областью локализации точек, используемых для определения искомых коэффициентов, является окрестность вершины трещины $\rho_{\min} \le \rho \le \rho_{\max}$ (рис. 4, $\rho = r/a$). Этот подход ранее успешно применялся для определения КИН при комбинированном нагружении [15, 16 и др.], однако вопрос об определении Т_т-напряжений не рассматривался. Здесь следует отметить, что поскольку вклад несингулярной составляющей поля напряжений (или перемещений) существенно меньше сингулярной, относительная погрешность определения $T_{_{XX}}$ -напряжений может быть существенно выше относительной погрешности определения КИН.

Заметим, что изложенный подход фактически сводится к построению соответствующего исходной информации о НДС аналитического решения задачи теории упругости о трещине в виде разложения по собственным функциям. В отличие от метода экстраполяции и других подходов к решению задачи определения сингулярных и несингулярных составляющих поля напряжений в вершине трещины, этот подход вполне корректен в силу единственности решения краевой задачи теории упругости [15].

Ниже приводятся результаты решения тестовых задач, на основе которых были рассмотрены некоторые методические вопросы: определение влияния погрешностей (экспери-

Рис. 4. Окрестность вершины трещины и область локализации точек, используемых при определении K_I и T_{xx} -напряжений

мента или расчета), выбор зоны локализации исходных данных, выбор количества учитываемых членов разложения N функции Вильямса на получаемые величины K_i и T_{yy} -напряжений.

Для численного решения тестовой задачи (см. рис. 2) в программной среде ANSYS на языке APDL был разработан макрос, передающий результаты расчетов НДС в текстовый документ, а затем реализующий алгоритм изложенного подхода с использованием математического приложения OriginPro.

Результаты расчетов показали, что для получения искомых параметров K_I и T_{xx} с требуемой для практики точностью достаточно учитывать три члена разложения функций Вильямса; при N > 3 дальнейшее увеличение учитываемых членов ряда (5) не приводит к изменению результатов, что говорит о его быстрой сходимости. С учетом этого обстоятельства дальнейшие расчеты выполнялись при N = 4, при этом количество точек исходной информации принималось $i \ge 40$; точки располагались в зоне $0,05 \le \rho \le 0,5$; распределение точек принималось близким к равномерному.

Результаты проведенных расчетов представлены в табл. 2, где $\Delta \overline{K}_{I} = \left[\left(K_{I} - K_{I}^{0} \right) / K_{I}^{0} \right] \times 100\%, K_{I}^{0} = \sigma \sqrt{\pi a}$ – точные значения КИН.

Из таблицы 2 следует, что относительные погрешности определения величины искомых параметров (K_I и T_{xx}) не превышают величин максимальных отклонений исходных данных, что позволяет сделать вывод о существенных преимуществах рассмотренного подхода перед методом экстраполяции. При этом следует отметить, что за исключением случая $\lambda = -1$ погрешности определения K_I и T_{xx} близки между собой.

Влияние пластических деформаций в зоне трещины

Основные трудности, которые возникают при расчете параметров механики разруше-

ния на основе обработки экспериментальных данных, связаны со следующими основными факторами:

 поскольку в реальном материале в принципе не могут выполняться условия сингулярности напряжений и деформаций, в окрестности вершины трещины всегда имеет место пластическая зона;

 – реальная трещина в исследуемом объекте (натурном объекте или модели) не является идеальным математическим разрезом, и в зоне вершины трещины, как правило, имеет место скругление;

– в зоне выхода трещины на свободную поверхность в окрестности точки O (см. рис. 1) имеет место трехмерное напряженное состояние, и асимптотика НДС определяется уравнениями, отличными от соотношений (1) [17, 18].

Из вышеуказанного следует, что в некоторой окрестности вершины трещины всегда имеют место существенные погрешности в выполнении условий моделирования задачи (задачи о математическом разрезе в упругом теле), и, следовательно, использование экспериментальных данных, зарегистрированных в этой области, может привести к дополнительным погрешностям в результатах. С учетом принципа Сен-Венана будем считать, что $\rho_{min} \ge 3\eta$, где $\eta = h/a$, 2η – безразмерная ширина трещиныразреза (иначе, η – условный безразмерный радиус скругления вершины трещины, см. рис. 4).

Для оценки влияния указанных погрешностей на точность определения искомых параметров рассмотрим задачу (см. рис. 2) для случая, когда в окрестности вершины трещины возникает пластическая зона. Материал – алюминиевый сплав Д16Т. Диаграмма деформирования материала приведена на рис. 5.

Расчеты выполнялись для двух величин нагрузок $\sigma_{yy}^{\infty} = \sigma$ (при этом $\sigma_{xx}^{\infty} = 0$) при последовательном увеличении величины нагрузки σ до тех пор, пока максимальная величина интен-

Таблица 2

К ₁ и 1 _{xx} -напряжении методом разложения по функциям бильямса									
$\delta\sigma_x^{\max}, \%$	$\lambda = -1$		$\lambda = -0,5$		$\lambda = 0$		$\lambda = 0,5$		
	$\Delta \overline{K}_{I}, \%$	$\Delta \overline{T}_{xx}$, %	$\Delta \overline{K}_{I}, \%$	$\Delta \overline{T}_{xx}$, %	$\Delta \overline{K}_{I}, \%$	$\Delta \overline{T}_{_{XX}}$, %	$\Delta \overline{K}_{I}, \%$	$\Delta \overline{T}_{xx}, \%$	
0	2,0	3,7	0,9	4,0	0,9	0,4	0,6	3,6	
10	4,0	9,1	5,2	6,4	8,5	7,0	3,0	5,5	
15	4,4	11,8	10,7	10,8	11,3	8,5	5,0	6,6	

Влияние погрешности исходных данных (δσ^{max}) при определении *K*, и *T*_-напряжений методом разложения по функциям Вильямса

Рис. 5. Диаграмма деформирования материала Д16Т

сивности деформаций в точке $\rho = \rho^*$, $\theta = 0$ не достигала значения 0,2%. Рассматривались два случая, для которых безразмерные радиусы пластической зоны достигали значений $\rho_{l}^{*} = 0, 1$ и $\rho_2^* = 0,2$ (см. рис. 4). На основе полученных полей определялись К_П и Т_{хх} методом разложения по функциям Вильямса. В качестве исходной информации использовались расчетные величины напряжений σ_{xx} в 40 точках, расположенных в областях $\rho_{min} \le \rho \le \rho_{max}$, $-\pi < \theta < \pi$.

При вычислениях K_I и T_{xx} использовались различные области исходных данных: минимальный радиус этой областей изменялся в пределах $0 \le \rho_{\min} \le 0,25$; для $0 \le \rho_{\min} \le 0,2$ максимальный радиус принимался $\rho_{max}=0,5;$ для $\rho_{min}=0,25$ принимался $\rho_{max}=0,65.$ Результаты расчетов приведены в табл. 3, а также на рис. 6.

Представленные в табл. 3 расчетные данные следует рассматривать в качестве приближенных оценок искомых величин, так как значения используемых при расчетах K_I и T_{xx} величины напряжений $\sigma_{xx}^{*}(x, y)$ «назначались» с помощью датчика случайных чисел в заданном диапазоне δσ_{xx}. Соответственно, результаты повторных решений задачи при одних и тех же параметрах $\delta\sigma_{xx}^{max}$, ρ_{min} , ρ_{max} могут приводить к несколько различным результатам.

При проведении численных экспериментов величина диапазона разброса погрешностей δσ_{rr} принималась по отношению к расчетным напряжениям $\delta \sigma_{xx}^{*}(x, y)$ в точках, используемых для определения искомых параметров. Следовательно, можно ожидать, что в точках, расположенных в непосредственной близости

Таблица 3

o *	a may 0/		$\rho_{max} = 0,5$							$\rho_{max}=0,65$
ρ* δ	$\delta\sigma_{xx}^{max}, \%$	ρ_{min}	0	0,02	0,03	0,07	0,10	0,15	0,2	0,25
	0	$\Delta \overline{K}_{I}, \%$	61	48	42	21	9	6	7	13
		$\Delta \overline{T}_{_{XX}},~\%$	56	52	51	44	23	19	17	18
	50/	$\Delta \overline{K}_{I}, \%$	62	50	44	22	9,8	7	10	10
	370	$\Delta \overline{T}_{_{XX}},~\%$	57	55	53	46	20	16	14	15
0,1	10%	$\Delta \overline{K}_{I}, \%$	58	44	47	28	14	12	10	12
		$\Delta \overline{T}_{_{XX}},~\%$	53	57	56	48	29	12	13	13
	0	$\Delta \overline{K}_{I}, \%$	51	24	45	25	12	0	4	10
		\overline{T}_{xx} , %	26	7	49	46	27	21	19	19
	50/	$\Delta \overline{K}_{I}, \%$	53	26	46	26	13	3	7	11
0,2	370	$\Delta \overline{T}_{_{XX}},~\%$	29	17	51	49	32	23	20	15
	10%	$\Delta \overline{K}_{I}, \%$	54	28	29	30	10	5	10	11
		$\Delta \overline{T}_{_{XX}}, \%$	29	25	54	51	3	24	21	20

Оценка влияния размера пластической зоны на погрешности определения \overline{K}_{I} и \overline{T}_{m}

Примечание: 1. В таблице приведены абсолютные величины $\Delta \overline{K}_{_l}$ и $\Delta \overline{T}_{_{xx}}$. 2. $\Delta \overline{K}_{_l} < 0$ при $\rho_{\min} \le 0, 1; \Delta \overline{K}_{_l} > 0$ при $\rho_{\min} > 0, 1; \Delta \overline{T}_{_{xx}} < 0$ при $0 \le \rho_{\min} \le 0, 25$.

48

Рис. 6. Влияние размеров пластической зоны и области локализации исходных данных на определение K_I и T_{xx} ($\delta \sigma_{xx}^{max} = 10\%$): $\overline{K}_I = K_I / \sigma \sqrt{\pi a}$, $\overline{T}_{xx} = T_{xx} / T_{xx}^0$.

от вершины трещины, абсолютная погрешность будет значительной, что при решении нелинейной задачи может привести к большему уровню погрешностей. Из рисунка 6 следует, что границей указанной области является величина $\rho \approx 0.03$.

Результаты выполненных расчетов для модельных упругопластических задач можно сформулировать следующим образом.

1. Исключение некоторой зоны (радиус которой меньше радиуса зоны пластических деформаций) из области, используемой для определения искомых параметров, в целом приводит к уменьшению погрешности результатов.

 Погрешность определения искомых параметров существенно зависит от размера зоны пластичности и в меньшей степени связана с величиной погрешности исходной информации.

3. Начиная с некоторой величины $\rho > \rho^{\wedge}$, при дальнейшем увеличении ρ^* значения искомых параметров не изменяются: в рассмотренных случаях $\rho^{\wedge} \approx 0,14$ при $\rho^* = 0,1$ и $\rho^{\wedge} \approx 0,18$ при $\rho^* = 0,2$. Это означает, что найденное при использовании данных при $\rho > \rho^{\wedge}$ аналитическое представление поля напряжений в виде разложения по функциям Вильямса позволяет правильно описать НДС во всей области $\rho \ge \rho^*$.

4. Величины \overline{K}_I и \overline{T}_{xx} , полученные на основе обработки данных, локализованных в области

 $\rho^* \leq \rho \leq \rho_{max}$, можно рассматривать в качестве приближенных оценок искомых безразмерных параметров \overline{K}_I и \overline{T}_{xx} , которые бы имели место в рассматриваемом объекте, изготовленном из идеально упругого материала.

5. Величину $\rho = \rho^{\wedge}$ можно приближенно считать радиусом зоны, где имеют место существенные погрешности моделирования задачи (связанные с наличием пластических деформаций, несовершенствами геометрии зоны вершин трещины и др.).

Заключение

Основные результаты исследования кратко можно сформулировать следующим образом.

1. На основе численных решений модельных задач показано, что при наличии погрешностей используемых данных о напряжениях в зоне вершины трещины метод экстраполяции может привести к значительным погрешностям определения T_{xx} -напряжений.

2. Показано, что метод разложения по собственным функциям решения задачи теории упругости о клиновидных вырезах (функциям Вильямса), основанный на математической обработке двухмерного массива информации в виде полей напряжений в зоне трещины, обеспечивает возможность определения T_{xx} -напряжений с достаточной для практики точностью даже МАТЕМАТИЧЕСКОЕ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ МАШИН И СИСТЕМ

при наличии значительной погрешности исходных данных.

3. При расчете с учетом пластических деформаций в окрестности вершины трещины предложен способ приближенной оценки радиуса пластической зоны, а также способ оценки условных величин K_I и T_{xx} -напряжений, которые бы имели место в рассматриваемом объекте из идеально упругого материала.

В заключение заметим, что хотя, как отмечено выше, точность определения КИН и *T*-напряжений методом экстраполяции по результатам расчетов НДС численными методами может быть достаточно высокой, то и в этом случае метод разложения по собственным функциям имеет очевидное преимущество в силу корректности решаемой задачи и, соответственно, устойчивости получаемого решения (это, в частности, подтверждается выводами 3 и 4). Указанное обстоятельство будет учтено при разработке специализированной программы для определения сингулярных и несингулярных компонент поля напряжений в вершине трещины.

Список литературы

- 1. *Матвиенко Ю.Г.* Модели и критерии механики разрушения. – М.: ФИЗМАТЛИТ, 2006. – 328 с.
- Liu S., Chao Y.J. Variation of fracture toughness with constraint // International Journal of Fracture. 2003. Vol. 124. P. 113–117.
- MatvienkoYu.G. Maximum average tangential stress criterion for predication of crack path // International Journal of Fracture. 2012. Vol. 176. P. 113–118.
- 4. Матвиенко Ю.Г., Муравин Е.Л. Параметры механики разрушения при комбинированном нагружении нормальным отрывом и поперечным сдвигом // Проблемы машиностроения и надежности машин. 2009. № 5. С. 27–32.
- Meliani H.M., MatvienkoYu.G., Pluvinage G. Two-parameter fracture criterion (K_{p,c}-T_{ef,c}) based on notch fracture mechanics // International Journal of Fracture. 2011. Vol. 167. P. 173–182.
- 6. *Матвиенко Ю.Г.* Два подхода к учету несингулярных *Т*-напряжений в критериях механики разрушения тел с вырезами // Проблемы машиностроения и надежности машин. 2011. № 5. С. 104–110.

- Матвиенко Ю.Г. Несингулярные Т-напряжения в проблемах двухпараметрической механики разрушения // Заводская лаборатория. Диагностика материалов. 2012. № 2. С. 51–58.
- Nakamura T., Parks D.M. Determination of elastic T-stress along three-dimensional crack fronts using an interaction integral // International Journal of Solids and Structures. 1992. Vol. 29. P. 1597–1611.
- 9. Матвиенко Ю.Г., Починков Р.А. Влияние несингулярных компонентов *Т*-напряжений на зоны пластической деформации у вершины трещины нормального отрыва // Механика деформации и разрушения. 2012. № 3. С. 6–14.
- Матвиенко Ю.Г., Чернятин А.С., Разумовский И.А. Численный анализ несингулярных составляющих трехмерного поля напряжений в вершине трещины смешанного типа // Проблемы машиностроения и надежности машин. 2013. № 4. С. 40–48.
- 11. *Морозов Е.М., Муземнек А.Ю., Шадский А.С.* ANSYS в руках инженера: Механика разрушения. – М.: ЛЕНАНД, 2008. – 456 с.
- 12. Писарев В.С., Матвиенко Ю.Г., Одинцев И.Н. Определение параметров механики разрушения при малом приращении длины трещины // Заводская лаборатория. Диагностикаматериалов. 2012. Т. 78. № 4. С. 45–51.
- Yates J.R., Zanganeh M., Tai Y.H. Quantifying crack tip displasment fields with DIC // Engineering Fracture Mechanics. 2010. Vol. 77. P. 1682–1692.
- 14. Разумовский И.А. Интерференционнооптические методы механики деформированного твердого тела. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. – 236 с.
- 15. *Тимошенко С.П., Гудьер Джс.* Теория упругости. – М.: Наука, 1979. – 560 с.
- Razumovsky I.A., Medvedev M.V. Procedure of stress intensity factors determination from normal displacement patterns // Proc. Intern. Society for Optical Eng. 1995. 2791. P. 128–133.
- 17. *Benthem J.R.* State of stress at the vertex of a quarter-infinite crack in a half-space // Int. J. Solid and Struct. 1977. Vol. 13. No. 5. P. 479–492.
- Benthem J.R. A quarter-infinite crack in a half-space; alternative and additional solution // Int. J. Solid and Struct. 1980. Vol. 16. No. 2. P. 119–130.

Материал поступил в редакцию 10.09.14

нологии.

ЛИТВИНОВ Иван Алексеевич

E-mail: i.a.litvinov1@gmail.com

МАТВИЕНКО Юрий Григорьевич

E-mail: **matvienko7@yahoo.com** Тел.: **+7 (499) 135-12-04** Доктор технических наук, профессор. Заместитель директора по научной работе Института машиноведения им. А.А. Благонравова РАН. Сфера научных интересов: нелинейное физико-математическое моделирование и иерархическая система критериев повреждений и разрушения материалов и конструкций на различных масштабно-структурных уровнях, комплексные критерии, методы анализа и нормирования прочности, живучести, безопасности и ресурса машин и конструкций в сильно поврежденных состояниях в условиях экстремальных физико-механических воздействий и коррозионных сред. Автор более 220 научных публикаций, из них 14 монографий и 10 авторских свидетельств на изобретения.

Инженер, компания «Шлюмберже» (Schlumberger). Сфера научных интересов: прочность конструкций, численные методы в механике, информационные тех-

РАЗУМОВСКИЙ Игорь Александрович

E-mail: **murza45@gmail.com** Тел.: **+7 (499) 135-62-98** Доктор технических наук, профессор. Заведующий лабораторией механики разрушения и живучести Института машиноведения им. А.А. Благонравова РАН. Сфера научных интересов: экспериментальные и экспериментальнорасчетные методы исследования напряженно-деформированного состояния с использованием оптико-интерференционных методов; механика разрушения, методы анализа полей остаточных напряжений; прочность и трещиностойкость многослойных конструкций. Автор более 120 научных публикаций в отечественных и международных изданиях, в том числе 7 коллективных и 2 личных монографий.